Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.505
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 173, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630379

RESUMO

Rice straw burning annually (millions of tons) leads to greenhouse gas emissions, and an alternative solution is producing humic acid with high added-value. This study aimed to examine the influence of a microbial consortium and other additives (chicken manure, urea, olive mill waste, zeolite, and biochar) on the composting process of rice straw and the subsequent production of humic acid. Results showed that among the fungal species, Thermoascus aurantiacus exhibited the most prominent impact in expediting maturation and improving compost quality, and Bacillus subtilis was the most abundant bacterial species based on metagenomics analysis. The highest temperature, C/N ratio reduction, and amount of humic acid production (Respectively in lab 61 °C, 54.67%, 298 g kg-1 and in pilot level 65 °C, 72.11%, 310 g kg-1) were related to treatments containing these microorganisms and other additives except urea. Consequently, T. aurantiacus and B. subtilis can be employed on an industrial scale as compost additives to further elevate quality. Functional analysis showed that the bacterial enzymes in the treatments had the highest metabolic activities, including carbohydrate and amino acid metabolism compared to the control. The maximum enzymatic activities were in the thermophilic phase in treatments which were significantly higher than that in the control. The research emphasizes the importance of identifying and incorporating enzymatically active strains that are suitable for temperature conditions, alongside the native strains in decomposing materials. This strategy significantly improves the composting process and yields high-quality humic acid during the thermophilic phase.


Assuntos
Oryza , Animais , Substâncias Húmicas , Bacillus subtilis , Galinhas , Ureia
2.
Sci Rep ; 14(1): 8493, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605135

RESUMO

This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.


Assuntos
Carvão Vegetal , Lotus , Carvão Vegetal/química , Matéria Orgânica Dissolvida , Temperatura , Espectrometria de Fluorescência/métodos , Substâncias Húmicas/análise
3.
Environ Monit Assess ; 196(5): 449, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38609694

RESUMO

The work objective was to assess the ecological state of soils by changing the residual oil content and restoring catalase activity after remediation. The soils were selected in various ecosystems: a steppe of the Rostov Region (Haplic Chernozem), beech-hornbeam forests in the Republic of Adygea (Haplic Cambisols), and semi-desert of the Caspian province of the Republic of Kalmykia (Eutric Cambisols). Soil samples were polluted with oil at a concentration of 5% of the soil mass. After that, ameliorants (biochar, nitroammophoska, sodium humate, and Baikal EM-1) were introduced into the oil-contaminated soil. The catalase activity of Haplic Cambisols was stimulated only with the introduction of D2 biochar by 11% relative to the control, and in Haplic Chernozem, catalase was most stimulated with the addition of nitroammophoska D0.5 and D1 by 65% and 57% of the control, respectively. Nitroammophoska in all doses significantly stimulated the enzymatic activity, in Eutric Cambisols by four to six times compared to the control. The range of soil stability determined by catalase activity: Eutric Cambisols > Haplic Chernozem > Haplic Cambisols. Thus, it is most effective to apply biochar in doses of D and D2 and D0.5 and D nitroammophoska during the remediation of oil-contaminated Haplic Chernozem. For the remediation of Haplic Cambisols, it is effective to introduce biochar in dose of D2, and Eutric Cambisols-biochar and sodium humate in dose of D0.5 and nitroammophoska (all doses). The results of the study allow using catalase activity as a very informative and statistically significant diagnostical indicator of the health of oil-contaminated soils after remediation.


Assuntos
Carvão Vegetal , Ecossistema , Monitoramento Ambiental , Catalase , Compostos de Nitrogênio , Sódio , Solo , Substâncias Húmicas
4.
J Environ Manage ; 357: 120767, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560953

RESUMO

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Assuntos
Atrazina , Herbicidas , Poluentes do Solo , Substâncias Húmicas/análise , Solo/química , Microbiologia do Solo , Herbicidas/química , Poluentes do Solo/química
5.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611808

RESUMO

An investigation was carried out on humic substances (HSs) isolated from the coal of the Kansk-Achinsk basin (Krasnoyarsk Territory, Russia). The coal HSs demonstrate the main parameters of molecular structure inherent to this class of natural compounds. An assessment was performed for the chemical, microbiological, and pharmacological safety parameters, as well as the biological efficacy. The HS sample meets the safety requirements in microbiological purity, toxic metals content (lead, cadmium, mercury, arsenic), and radionuclides. The presence of 11 essential elements was determined. The absence of general, systemic toxicity, cytotoxicity, and allergenic properties was demonstrated. The coal HS sample was classified as a Class V hazard (low danger substances). High antioxidant and antiradical activities and immunotropic and cytoprotective properties were identified. The ability of the HS to inhibit hydroxyl radicals and superoxide anion radicals was revealed. Pronounced actoprotective and nootropic activities were also demonstrated in vivo. Intragastric administration of the HS sample resulted in the improvement of physical parameters in mice as assessed by the "swim exhaustion" test. Furthermore, intragastric administration in mice with cholinergic dysfunction led to a higher ability of animals with scopolamine-induced amnesia to form conditioned reflexes. These findings suggest that the studied HS sample is a safe and effective natural substance, making it suitable for use as a dietary bioactive supplement.


Assuntos
Arsênio , Substâncias Húmicas , Animais , Camundongos , Amnésia , Antioxidantes/farmacologia , Carvão Mineral
6.
Sci Rep ; 14(1): 8394, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600181

RESUMO

Antioxidants (AOX) in soils originate mainly from secondary plant metabolites and are pivotal in many redox processes in environment, maintaining soil quality. Still, little is known about the influence of land uses on their accumulation in soil. The aim of the paper was to determine the content of these redox-active compounds in the extracts of A horizons of abandoned fallows, arable and woodland soils. Total antioxidant capacity (TAC) of soils under various uses and vegetation was evaluated in different soil extracts using Folin-Ciocâlteu method. The contribution of humic acids to TAC was determined and antioxidant profiles estimated using the chromatographic GC-MS method. Forest soils exhibited the highest TAC (15.5 mg g-1) and AOX contents (4.34 mg g-1), which were positively correlated with soil organic carbon content. It was estimated that humic acids contribute to over 50% of TAC in soils. The main phenolics in woodland A horizons were isovanillic and p-hydroxybenzoic acid (p-HA), while esculetin and p-HA predominated in the abandoned fallows due to the prevalence of herbaceous vegetation. Cultivated soils were the most abundant in p-HA (56.42%). In the studied topsoils, there were considerable amounts of aliphatic organic matter, which role in redox processes should be further evaluated.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Substâncias Húmicas/análise , Antioxidantes/análise , Carbono/química , Florestas
7.
Sci Total Environ ; 926: 172086, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556025

RESUMO

Dissolved organic matter (DOM) in rainfall participates in many biogeochemical cycles in aquatic environments and affects biological activities in water bodies. Revealing the characteristics of rainfall DOM could broaden our understanding of the carbon cycle. Therefore, the distribution characteristics and response mechanisms of DOM to microorganisms were investigated in different regions of Hebei. The results indicated that the water quality of the northern region was worse than that of the middle and southern regions. The two protein like components (C1, C2) and one humic like component (C3) were obtained; at high molecular weight (MW), the fluorescence intensity is high in the northern region (0.03 ± 0.02 R.U.), while at low MW, the fluorescence intensity is highest in the southern region (0.50 ± 0.18 R.U.). Furthermore, C2 is significantly positively correlated with C1 (P < 0.01), while C2 is significantly negatively correlated with C3 (P < 0.05) was observed. The spectral index results indicated that rainfall DOM exhibited low humification and highly autochthonous characteristics. The southern region obtained higher richness and diversity of microbial species than northern region (P < 0.05). The community exhibits significant spatiotemporal differences, and the Acinetobacter, Enterobacter, and Massilia, were dominant genus. Redundancy and network analyses showed that the effects of C1, C2, and nitrate on microorganisms increased with decreasing MW, while low MW exhibited a more complex network between DOM and microorganisms than high MW. Meanwhile, C1, C2 had a large total effect on ß-diversity and function through structural equation modeling. The backward trajectory model indicates that the sources of air masses are from the northwest, local area, and sea in the northern, middle, and southern regions, respectively. This study broadened the understanding of the composition of summer rainfall DOM and its interactions with microorganisms during rainfall.


Assuntos
Matéria Orgânica Dissolvida , Rios , Rios/química , Espectrometria de Fluorescência , Qualidade da Água , Compostos Orgânicos/análise , Substâncias Húmicas/análise
8.
Chemosphere ; 355: 141710, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493998

RESUMO

Natural organic matter is a mixture of microbial decomposition products widely found in surface and groundwater. These organic materials have great potential as carbon-based precursors for chemical synthesis. This work demonstrated the development of a green photocatalyst via a facile adsorption process that combined colloidal titanium dioxide (TiO2) with humic acid. The resulting photocatalyst was visible light active and able to completely degrade 5 mg/L of BPA within 6 h under the irradiation of energy-efficient LED white light. The first-order kinetic rate constant of the reaction was determined to be 1.7 × 10-2 min-1. The enhanced photocatalytic activity was attributed to the decreased band gap energy and effective charge separation that limits the photogenerated electron-hole recombination. The outcome of this research opened an opportunity for the development of sustainable functional materials using natural organic matter.


Assuntos
Compostos Benzidrílicos , Substâncias Húmicas , Luz , Fenóis/química , Titânio/química , Catálise
9.
Chemosphere ; 355: 141826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552805

RESUMO

Recent studies have increasingly focused on the occurrence of plastic leachate and its impacts on aquatic ecosystems. Nonetheless, the environmental fate of this leachate in the presence of abundant natural organic matter (NOM)-a typical scenario in environments contaminated with plastics-remains underexplored. This study investigates the photo-induced leaching behaviors of dissolved organic matter (DOM) from terrestrial-sourced particles (forest soil and leaf litter) and microplastics (MPs), specifically polystyrene (PS) and polyvinyl chloride (PVC), over a two-week period. We also examined the biodegradability and spectroscopic characteristics of the leached DOM from both sources. Our results reveal that DOM from microplastics (MP-DOM) demonstrates more persistent leaching behavior compared to terrestrial-derived DOM, even with lesser quantities per unit of organic carbon. UV irradiation was found to enhance DOM leaching across all particle types. However, the photo-induced leaching behaviors of fluorescent components varied with the particle type. The MP group exhibited a broader range and higher biodegradability (ranging from 19.7% to 61.6%) compared to the terrestrial-sourced particles (ranging from 3.7% to 16.5%). DOM leached under UV irradiation consistently showed higher biodegradability than that under dark conditions. Furthermore, several fluorescence characteristics of DOM, such as the protein/phenol-like component (%C2), terrestrial humic-like component (%C3), and humification index (HIX)-traditionally used to indicate the biodegradability of natural organic matter-were also effective in assessing MP-DOM (with correlation coefficients R2 = 0.6055 (p = 0.003), R2 = 0.5389 (p = 0.007), and R2 = 0.4640 (p = 0.015), respectively). This study provides new insights into the potential differences in environmental fate between MP-DOM and NOM in aquatic environments heavily contaminated with MPs.


Assuntos
Microplásticos , Plásticos , Matéria Orgânica Dissolvida , Ecossistema , Solo/química , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos
10.
Environ Sci Technol ; 58(13): 5963-5973, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512311

RESUMO

In this study, characteristics of oxidation debris (OD) and its stripping mechanism from graphene oxide (GO) were explored. The results demonstrated that OD contains three components, namely, protein-, fulvic acid-, and humic acid-like substances; among these, protein-like substances with lower molecular weight and higher hydrophilicity were most liable to be stripped from GO and were the primary components stripped from GO at pH < 10, whereas humic acid- and fulvic acid-like substances were stripped from GO at pH > 10. During the stripping of OD, hydrogen bonds from carboxyl and carbonyl were the first to break, followed by hydrogen bonds from epoxy. Subsequently, π-π interactions were broken, and hydrogen bond interactions induced by hydroxyl groups were the hardest to break. After the stripping of OD, the recombination of OD on GO was observed, and regions containing relatively fewer oxygen-containing functional groups were favorable binding sites for the readsorbed OD. The stripping and recombination of OD on GO resulted in an uneven GO surface, which should be considered during the development of GO-based environmental materials and the evaluation of their environmental behavior.


Assuntos
Grafite , Nanoestruturas , Óxidos/química , Substâncias Húmicas/análise , Grafite/química
11.
Bioresour Technol ; 399: 130617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513923

RESUMO

This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.


Assuntos
Compostos de Amônio , Compostagem , Eliminação de Resíduos , Substâncias Húmicas , Fosfatos , Carbono , Nitrogênio/química , Alimentos , Eliminação de Resíduos/métodos , Solo , Bactérias , Esqueleto/química , Esterco
12.
Ecotoxicol Environ Saf ; 275: 116228, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518611

RESUMO

Activated carbon air cathode combined with iron anode oxidation-flocculation synergistic Arsenic (As) removal was a new groundwater purification technology with low energy consumption and high efficiency for groundwater with high As concentration. The presence of organic matter such as humic acid (HA) had ambiguous effects on formation of organic colloids in the system. The effects of the particle size distribution characteristics of these colloids on the formation characteristics of flocs and the efficiency of As purification was not clear. In this work, we used five different pore size alumina filter membranes to separate mixed phase solutions and studied the corresponding changes in iron and arsenic concentrations in the presence and absence of humic acid conditions. In the presence of HA, the arsenic concentration of < 0.05 µm particle size components was 1.01, 1.28, 3.07, 7.69, 2.85 and 1.24 times of that in the absence of HA. At the same time, the arsenic content in 0.05-0.1 µm and 0.1-0.45 µm particle size components was also higher than that in the system without HA, which revealed that the presence of HA hindered the flocculation behavior of As distribution to higher particle sizes in the early stage of the reaction. The presence of HA affected the flocculation rate of iron flocs from small to large particle size fractions and it had limited effect on the behavior of large-size flocs in adsorption of As. These results provide a theoretical basis for targeted, rapid, and low consumption synergistic removal of arsenic and organic compounds in high arsenic groundwater.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Arsênio/análise , Ferro , Substâncias Húmicas/análise , Floculação , Poluentes Químicos da Água/análise , Eletrodos , Coloides , Purificação da Água/métodos
13.
Bioresour Technol ; 399: 130623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518876

RESUMO

Livestock manure often contains various pollutants. The aim of this study was to investigate how adding amoxicillin (AMX), Cu, and both AMX and Cu (ACu) affected humification during composting and the microbial mechanisms involved. The cellulose degradation rates were 16.96%, 10.86%, and 9.01% lower, the humic acid contents were 18.71%, 12.89%, and 16.78% lower, and the humification degrees were 24.72%, 24.16%, and 15.73% lower for the AMX, Cu, and ACu treatments, respectively, than the control. Adding AMX and Cu separately or together inhibited humic acid formation and decreased the degree of humification, but the degree of humification was decreased less by ACu than by AMX or Cu separately. The ACu treatment decreased the number of core bacteria involved in humic acid formation and decreased carbohydrate and amino acid metabolism during the maturing period, and thereby delayed humic acid formation and humification. The results support composting manure containing AMX and Cu.


Assuntos
Compostagem , Substâncias Húmicas , Animais , Bovinos , Amoxicilina , Solo , Cobre , Esterco
14.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535788

RESUMO

A recent study published data on the growth performance, relative weights of the organs of the gastrointestinal tract, liver histology, serum biochemistry, and hematological parameters for turkey poults fed an experimental diet contaminated with aflatoxin B1 (AFB1) and humic acids (HA) extracted from vermicompost. The negative effects of AFB1 (250 ng AFB1/g of feed) were significantly reduced by HA supplementation (0.25% w/w), suggesting that HA might be utilized to ameliorate the negative impact of AFB1 from contaminated diets. The present study shows the results of the remaining variables, as an extension of a previously published work which aimed to evaluate the impact of HA on the intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an AFB1-contaminated diet. For this objective, five equal groups of 1-day-old female Nicholas-700 turkey poults were randomly assigned to the following treatments: negative control (basal diet), positive control (basal diet + 250 ng AFB1/g), HA (basal diet + 0.25% HA), HA + AFB1 (basal diet + 0.25% HA + 250 ng AFB1/g), and Zeolite (basal diet + 0.25% zeolite + 250 ng AFB1/g). In the experiment, seven replicates of ten poults each were used per treatment (n = 70). In general, HA supplementation with or without the presence of AFB1 showed a significant increase (p < 0.05) in the number of beneficial butyric acid producers, ileum villi height, and ileum total area, and a significant reduction in serum levels of fluorescein isothiocyanate-dextran (FITC-d), a marker of intestinal integrity. In contrast, poults fed with AFB1 showed a significant increase in Proteobacteria and lower numbers of beneficial bacteria, clearly suggesting gut dysbacteriosis. Moreover, poults supplemented with AFB1 displayed the lowest morphometric parameters and the highest intestinal permeability. Furthermore, poults in the negative and positive control treatments had the lowest cutaneous basophil hypersensitivity response. These findings suggest that HA supplementation enhanced intestinal integrity (shape and permeability), cellular immune response, and healthier gut microbiota composition, even in the presence of dietary exposure to AFB1. These results complement those of the previously published study, suggesting that HA may be a viable dietary intervention to improve gut health and immunity in turkey poults during aflatoxicosis.


Assuntos
Microbioma Gastrointestinal , Zeolitas , Animais , Feminino , Aflatoxina B1 , Ácido Butírico , Dieta , Substâncias Húmicas , Imunidade Celular , Perus
15.
Bioresour Technol ; 399: 130633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552862

RESUMO

The remediation for polycyclic aromatic hydrocarbons contaminated soil with cost-effective method has received significant public concern, a composite material, therefore, been fabricated by loading humic acid into biochar in this study to activate persulfate for naphthalene, pyrene and benzo(a)pyrene remediation. Experimental results proved the hypothesis that biochar loaded humic acid combined both advantages of individual materials in polycyclic aromatic hydrocarbons adsorption and persulfate activation, achieved synergistic performance in naphthalene, pyrene and benzo(a)pyrene removal from aqueous solution with efficiency reached at 98.2%, 99.3% and 90.1%, respectively. In addition, degradation played a crucial role in polycyclic aromatic hydrocarbons remediation, converting polycyclic aromatic hydrocarbons into less toxic intermediates through radicals of ·SO4-, ·OH, ·O2-, and 1O2 generated from persulfate activation process. Despite pH fluctuation and interfering ions inhibited remediation efficiency in some extent, the excellent performances of composite material in two field soil samples (76.7% and 91.9%) highlighted its potential in large-scale remediation.


Assuntos
Carvão Vegetal , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Substâncias Húmicas , Solo , Benzo(a)pireno , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Pirenos , Naftalenos
16.
Bioresour Technol ; 398: 130503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442847

RESUMO

Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.


Assuntos
Compostagem , Substâncias Húmicas , Animais , Substâncias Húmicas/análise , Solo , Esterco , Galinhas , Carvão Mineral , Monofenol Mono-Oxigenase , Carbono
17.
Huan Jing Ke Xue ; 45(3): 1553-1560, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471869

RESUMO

In this study, the degradation efficiency and mechanism of carbamazepine (CBZ), a typical emerging contaminant in water, in the UV/sulfite process were investigated. The effects of different concentrations of dissolved oxygen [ρ(DO)] on the degradation of CBZ by UV-activated sulfite were investigated. Additionally, under a simulated natural water environment-controlled initial ρ(DO) of (8.0 ±0.2) mg·L-1, the effects of different process parameters (sulfite dosages and reaction pH) and water environmental factors (the presence of HCO3-, Cl-, and humic acids) on the degradation of CBZ were comprehensively analyzed. The results showed that the UV/sulfite process efficiently degraded CBZ with a degradation rate of 85.3% during the 30 min reaction time and followed the pseudo-first order kinetic model with the constant of 0.055 7 min-1. Using the electron spin resonance detection, reactive species quenching tests, and the competition kinetics, the sulfate radicals (SO4-·) and hydroxyl radicals (·OH) in the UV/sulfite process were determined to be the main reactive species and were responsible for the degradation of CBZ with contribution rates of 43.9% and 56.1%, respectively. In addition, the degradation efficiency of CBZ decreased with the increasing concentration of HCO3-, and the presence of Cl- had little effect on the degradation of CBZ, whereas the presence of humic acids significantly inhibited the degradation of CBZ. Moreover, the accumulation of sulfate during the reaction was significantly lower than the limit of the Standard for Drinking Water (GB5749-2022). Additionally, the sulfite consumption rate constant was 0.004 4 min-1, which was significantly lower than the degradation rate constant of CBZ, indicating that sulfite could be activated efficiently by UV light to degrade CBZ in water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Raios Ultravioleta , Substâncias Húmicas , Poluentes Químicos da Água/análise , Carbamazepina/análise , Cinética , Sulfitos , Sulfatos , Purificação da Água/métodos , Oxirredução
18.
J Environ Manage ; 355: 120460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430881

RESUMO

The practice of returning straw to agricultural fields is a globally employed technique. Such agricultural fields also receive a significant amount of nitrogen (N) and phosphorus (P) fertilizers, because these two macronutrients are essential for plant growth and development. However, the consequences of such macronutrients input on straw decomposition, soil dissolved organic matter (DOM), key microbes, and lignocellulolytic enzymes are still unclear. In a similar aim, we designed a long-term straw returning study without and with different N and P nutrient supplementation: CK (N0P0), T1 (N120P0), T2 (N120P60), T3 (N120P90), T4 (N120P120), T5 (N0P90), T6 (N60P90), and T7 (N180P90), and evaluated their impact on rice and oilseed rape yield, soil DOM, enzymes, lignocellulose content, microbial diversity, and composition. We found straw returning improved overall yield in all treatments and T7 showed the highest yield for oilseed rape (30.31-38.87 g/plant) and rice (9.14-9.91 t/ha) during five-years of study. The fertilizer application showed a significant impact on soil physicochemical properties, such as water holding capacity and soil porosity decreased, and bulk density increased in fertilized treatments, as compared to CK. Similarly, significantly low OM, cellulose, hemicellulose, and lignin content were found in T7, T4, T3, and T2, while high values were found in CK and T5, respectively. The fluorescence excitation-emission matrix spectra of DOM of different treatments revealed that T3, T7, T4, and T6 showed high peak M (microbial by-products), peak A and peak C (humic acid-like) as compared to others. The microbial composition was also distinctive in each treatment and a high relative abundance of Chloroflexi, Actinobacteriota, Ascomycota, and Basidiomycota were found in T2 and T3 treatments, respectively. These findings indicate that the decomposition of straw in the agricultural field was dependent on nutrients input, which facilitated key microbial growth and impacted positively on lignocellulolytic enzymes, which further aided the breakdown of all components of straw in the field efficiently. On the other hand, high input of chemical based fertilizers to soil can lead to several environmental issues, such as nutrient imbalance, nutrient runoff, soil pH change and changes in microbial activities. Keeping that in consideration, we recommend moderate fertilizer dosage (N120P90) in such fields to achieve higher decomposition of crop straw with a small yield compromise.


Assuntos
Fertilizantes , Oryza , Agricultura/métodos , Solo/química , Substâncias Húmicas , Nitrogênio/análise
19.
J Environ Manage ; 355: 120463, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430882

RESUMO

Biochar could promote humification in composting, nevertheless, its mechanism has not been fully explored from the perspective of the overall bacterial community and its metabolism. This study investigated the effects of bamboo charcoal (BC) and wheat straw biochar (WSB) on the humic acid (HA) and fulvic acid (FA) contents during pig manure composting. The results showed that BC enhanced humification more than WSB, and significantly increased the HA content and HA/FA ratio. The bacterial community structure under BC differed from those under the other treatments, and BC increased the abundance of bacteria associated with the transformation of organic matter compared with the other treatments. Furthermore, biochar enhanced the metabolism of carbohydrates and amino acids in the thermophilic and cooling phases, especially BC. Through Mantel tests and network analysis, we found that HA was mainly related to carbon source metabolism and the bacterial community, and BC might change the interaction patterns among carbohydrates, amino acid metabolism, Bacillales, Clostridiales, and Lactobacillales with HA and FA to improve the humification process during composting. These results are important for understanding the mechanisms associated with the effects of biochar on humification during composting.


Assuntos
Carvão Vegetal , Compostagem , Animais , Suínos , Carvão Vegetal/química , Esterco/microbiologia , Solo/química , Substâncias Húmicas , Carboidratos , Bactérias
20.
BMC Plant Biol ; 24(1): 191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486134

RESUMO

BACKGROUND: Enriching the soil with organic matter such as humic and fulvic acid to increase its content available nutrients, improves the chemical properties of the soil and increases plant growth as well as grain yield. In this study, we conducted a field experiment using humic acid (HA), fulvic acid (FA) and recommended dose (RDP) of phosphorus fertilizer to treat Hordeum vulgare seedling, in which four concentrations from HA, FA and RDP (0.0 %, 50 %, 75 % and 100%) under saline soil conditions . Moreover, some agronomic traits (e.g. grain yield, straw yield, spikes weight, plant height, spike length and spike weight) in barley seedling after treated with different concentrations from HA, FA and RDP were determined. As such the beneficial effects of these combinations to improve plant growth, N, P, and K uptake, grain yield, and its components under salinity stress were assessed. RESULTS: The findings showed that the treatments HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6), improved number of spikes/plant, 1000-grain weight, grain yield/ha, harvest index, the amount of uptake of nitrogen (N), phosphorous (P) and potassium (K) in straw and grain. The increase for grain yield over the control was 64.69, 56.77, 49.83, 49.17, and 44.22% in the first season, and 64.08, 56.63, 49.19, 48.87, and 43.69% in the second season,. Meanwhile, the increase for grain yield when compared to the recommended dose was 22.30, 16.42, 11.27, 10.78, and 7.11% in the first season, and 22.17, 16.63, 11.08, 10.84, and 6.99% in the second season. Therefore, under salinity conditions the best results were obtained when, in addition to phosphate fertilizer, the soil was treated with humic acid or foliar application the plants with fulvic acid under one of the following treatments: HA + 100% RDP (T1), HA + 75% RDP (T2), FA + 100% RDP (T5), HA + 50% RDP (T3), and FA + 75% RDP (T6). CONCLUSIONS: The result of the use of organic amendments was an increase in the tolerance of barley plant to salinity stress, which was evident from the improvement in the different traits that occurred after the treatment using treatments that included organic amendments (humic acid or fulvic acid).


Assuntos
Benzopiranos , Hordeum , Solo , Solo/química , Substâncias Húmicas/análise , Fertilizantes/análise , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...